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Pharmacology over the past 100 years has had a rich tradition of scientists with the ability to form qualitative or semi-
quantitative relations between molecular structure and activity in cerebro. To test these hypotheses they have consistently used
traditional pharmacology tools such as in vivo and in vitro models. Increasingly over the last decade however we have seen that
computational (in silico) methods have been developed and applied to pharmacology hypothesis development and testing.
These in silico methods include databases, quantitative structure-activity relationships, pharmacophores, homology models
and other molecular modeling approaches, machine learning, data mining, network analysis tools and data analysis tools that
use a computer. In silico methods are primarily used alongside the generation of in vitro data both to create the model and to
test it. Such models have seen frequent use in the discovery and optimization of novel molecules with affinity to a target, the
clarification of absorption, distribution, metabolism, excretion and toxicity properties as well as physicochemical
characterization. The aim of this review is to illustrate some of the in silico methods for pharmacology that are used in drug
discovery. Further applications of these methods to specific targets and their limitations will be discussed in the second
accompanying part of this review.
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Introduction

The term ‘in silico’ is a modern word usually used to mean

experimentation performed by computer and is related to

the more commonly known biological terms in vivo and

in vitro. The history of the ‘in silico’ term is poorly defined,

with several researchers claiming their role in its origination.

However, some of the earliest published examples of the

word include the use by Sieburg (1990) and Danchin et al.

(1991). In a more recent book, Danchin (2002) provides a

quotation that offers a concise and cogent depiction of the

potential of computational tools in chemistry, biology and

pharmacology:

‘[y] [I]nformatics is a real aid to discovery when

analyzing biological functions [y]. [y] I was con-

vinced of the potential of the computational ap-

proach, which I called in silico, to underline its

importance as a complement to in vivo and in vitro

experimentation.’

In silico pharmacology (also known as computational

therapeutics, computational pharmacology) is a rapidly

growing area that globally covers the development of

techniques for using software to capture, analyse and

integrate biological and medical data from many diverse

sources. More specifically, it defines the use of this informa-

tion in the creation of computational models or simulations

that can be used to make predictions, suggest hypotheses,

and ultimately provide discoveries or advances in medicine

and therapeutics.

Time and again it has been stated that the successful

industrial companies are those that manage information as a
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key resource. We could reiterate this for drug discovery,

which is a hugely complex information handling and

interpretation exercise. With so much information to

process, we need to be able to discover the shortcuts or the

rules that will point us as quickly as possible to the targets

and molecules that are likely to proceed to the clinic then

onto the market. Computational or in silico methods are

helping us to make decisions and simulate virtually every

facet of drug discovery and development (Swaan and Ekins,

2005), moving the pharmaceutical industry closer to

engineering-based disciplines. For example, we can cherry

pick ideas or molecules using virtual screening (Lengauer

et al., 2004; Shoichet, 2004) as described later.

It has also been suggested that if we are to build on the

advances of the human genome, we need to integrate

computational and experimental data, with the aim of

initiating in silico pharmacology linking all data types. This

could change the way the pharmaceutical industry discovers

drugs using data to enable simulations; however, there may

still be significant gaps in our knowledge beyond genes and

proteins (Whittaker, 2003). Structure-based methods are

broadly used for drug discovery but these are just a

beginning, for example in neuropharmacology, it is expected

that ligand–receptor interaction kinetic models will need to

be integrated with network approaches to understand fully

neurological disorders, in general this could be applied more

widely to pharmacology (Aradi and Erdi, 2006).

Basically, there are two outcomes when bioactive com-

pounds and biological systems interact (Figure 1) (Testa and

Krämer, 2006). Note that ‘biological system’ is defined here

very broadly and includes functional proteins (for example,

receptors), monocellular organisms and cells isolated from

multicellular organisms, isolated tissues and organs, multi-

cellular organisms and even populations of individuals, be they

uni- or multicellular. As for the interactions between a drug

(or any xenobiotic) and a biological system, they may be

simplified to ‘what the compound does to the biosystem’ and

‘what the biosystem does to the compound.’ A drug that acts

on a biological system can elicit a pharmacological and/or

toxic response, in other words a pharmacodynamic (PD) event.

Symmetrically, the biological system acts on the xenobiotic by

absorbing, distributing, metabolising and excreting it. These

are the pharmacokinetic (PK) events. But one must appreciate

that these two aspects of the behaviour of xenobiotics are

inextricably interdependent. Absorption, distribution and

elimination will obviously have a decisive influence on the

intensity and duration of PD effects, whereas biotransforma-

tion will generate metabolites that may have distinct PD effects

of their own. Conversely, by its own PD effects, a compound

may affect the state of the organism (for example, hemody-

namic changes and enzyme activities) and hence its capacity to

handle xenobiotics. Only a systemic approach as used in PK/

PD modelling and in clinical pharmacology is capable of

appreciating the global nature of this interdependence. To

clarify this discussion, it may be useful to designate as targets

the various biological components that elicit a PD event

following their interaction with a drug or another xenobiotic.

Such targets include receptors, ion channels, nucleic acids,

anabolic and catabolic enzymes, and so on. Similarly, one can

refer to agents for the biological components (xenobiotic-

metabolising enzymes, transporters, circulating proteins, mem-

branes, and so on) which act on drugs by metabolising,

transporting, distributing or excreting them.

History and evolution of in silico approaches

Drug design and related disciplines in drug discovery did not

wait for the advent of informatics to be born and to grow as

sciences. As masterfully summarised by Albert (1971, 1985),

the earliest intuitions and insights in structure–activity

relations can be traced to the nineteenth century. A relation

between activity and a physicochemical property was firmly

established by Meyer (1899) and Overton (1901), who

proposed a ‘Lipoid theory of cellular depression’ such that

the higher the partition coefficient between a lipid solvent

and water, the greater the depressant action. Such papers

paved the way for the recognition of lipophilicity and

electronic properties as major determinants of PD and PK

responses, as best illustrated by the epoch-making and still

ongoing work of Corwin Hansch (Hansch and Fujita, 1964;

Hansch, 1972), a founding father of drug design.

Other pioneers (for example, Crum Brown and Fraser;

reviewed by (Albert, 1971)) saw that chemical structure (that

is, the nature and connectivity of atoms in a molecule, in

fact the two-dimensional structure (2D) of compounds) also

played an essential role in pharmacological activity. The

conceptual jump from 2D to three-dimensional (3D) struc-

ture owes much to the work of Cushny (1926), whose book

summarises a life dedicated to relations between enantio-

merism and bioactivity. This vision was expanded in the

mid-twentieth century by the discovery of conformational

effects on bioactivity (Burgen, 1981).

In parallel with our growing understanding of the concept

of molecular structure, a few visionary investigators in the late

nineteenth and early twentieth centuries (for example, John

Langley, Paul Ehrlich and Alfred Clark; reviewed by (Arı̈ens,

1979; Parascandola, 1980) developed the concept of receptors,

namely the targets of drug action. The analogies between

receptors and enzymes were outlined by Albert (1971).

Figure 1 The two basic modes of interaction between xenobiotics
and biological systems, namely PD (activity and toxicity) and PK
events (ADME) (modified from (Testa and Krämer, 2006) and
reproduced with the kind permission of the Verlag Helvetica Chimica
Acta in Zurich). ADME, absorption, distribution, metabolism and
excretion; PD, pharmacodynamic; PK, pharmacokinetic.
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The converging lines of progress in chemistry and biology

generated a flood of information and knowledge which went

beyond the usual capacity of ‘in cerebro’ data handling and

was a driving force in the emergence and development of

computer sciences. Hansch was among the very first in the

1950s to use calculators and statistics to arrive at quantitative

relations between structure (in fact, parameters and descrip-

tors) and activity. Such was the birth of quantitative

structure–activity relationships (QSARs), followed in the

1980s and 1990s by computer graphics and molecular

modelling. However, computer sciences rapidly ceased to

be a simple tool in drug discovery and pharmacology and

became a major contributor to progress. The chemistry–

biology–informatics triad has now evolved into a life of its

own and is bringing pharmacology to new heights, as this

review will briefly attempt to illustrate.

Quantitative structure–activity relationships

The infancy of in silico pharmacology can be established in

the early 1960s when quantitative relationships between

chemical structure and PD and PK effects in biological

systems began to be unveiled by computational means. Since

then, the analysis and recognition of QSAR has become an

essential component of modern medicinal chemistry and

pharmacology. The initial focus was in providing computa-

tional estimates for the bioactivity of molecules (Hansch and

Fujita, 1964). Accordingly, in a clear break from nomencla-

ture, any attempt being made to establish a connection

between chemical structure and a biological effect (that

being activity, toxicity, absorption, distribution, metabolism,

excretion and toxicity (ADME/Tox) or physico-chemical

properties) will be generally referred to in this review as

QSAR, for clarity. Therefore, in their broadest sense, QSARs

consist of construction of a mathematical model relating a

molecular structure to a chemical property or biological

effect by means of statistical techniques. This is not an easy

task when considering, on the one hand, the possibility that

different molecules act by different mechanisms or interact

with the receptor in different binding modes leading to the

presence of outliers which are unable to fit any QSAR model

(Verma and Hansch, 2005) but also, on the other hand, the

intrinsic noise associated with both the original data and

concrete methodological aspects involved in the construc-

tion of a QSAR model (Polanski et al., 2006). Ultimately, if a

significant correlation is achieved for a set of training

molecules for which robust biological data is available, the

model can then be used to predict the biological effect for

other molecules, although as will be described in the

accompanying review there may be some limitations to

model applicability that should be considered (Ekins et al.,

2007). Over the last 40 years, these efforts have generated

thousands of QSAR models, many of which have been

collected and stored in the C-QSAR database (Hansch et al.,

2002; Kurup, 2003).

Descriptor-based methods. A key aspect in QSAR is the use

of molecular descriptors as numerical representations of

chemical structures. The number and type of molecular

descriptors is large and varied (Karelson, 2000; Todeschini

and Consonni, 2000) and thus procedures to select those

that are most relevant for modelling the biological effect of

interest are extremely important (Walters and Goldman,

2005). Molecular descriptors are usually classified according

to the dimensionality of the chemical representation from

which they are computed (Xue and Bajorath, 2000). On this

basis, one-dimensional descriptors encode numerically gen-

eric properties such as molecular weight, molar refractivity

and octanol/water partition coefficient, offering a fair

reflection of the size, shape and lipophilicity of molecules.

Despite their low dimensionality, some of these descriptors

have been associated with the drug-like character of

molecules (Lipinski et al., 1997) and are thus found often

as biologically relevant descriptors in QSAR equations

(Hansch et al., 2002). On the other hand, 2D descriptors

are computed from topological representations of molecules

(Gozalbes et al., 2002). The models constructed from these

descriptors are habitually referred to as 2D-QSAR, a metho-

dology widely established both in predicting physico-

chemical properties as well as in providing quantitative

estimates of various biological effects (Dudek et al., 2006).

In contrast, 3D descriptors are obtained directly from

the 3D structure of molecules thus resulting in the so-called

3D-QSAR methods (Akamatsu, 2002). A characteristic of 3D

descriptors is their dependence on the molecular conforma-

tion being used. This is the reason why many 3D-QSAR

methods require the molecules that are aligned before

constructing the model (Kubinyi et al., 1998), which has in

part motivated the emergence of multiple techniques and

approaches for aligning molecules, either directly through

the flexible superposition of molecules (Lemmen and

Lengauer, 2000) or through the docking of compounds in a

protein active site, in cases when experimentally determined

structural information on the target protein is available

(Ortiz et al., 1995; Sippl, 2002). Of mention among these

alignment-dependent 3D-QSAR methods are the widely

established comparative molecular field analysis (Cramer

et al., 1988) and comparative molecular similarity indices

analysis (Klebe, 1998). This limitation motivated the devel-

opment of alternative alignment-independent 3D-QSAR

methods based on the statistical analysis of distributions

of surface-based features (Pastor et al., 2000; Stiefl and

Baumann, 2003).

All these advancements were made with the hope that,

compared to 2D-QSAR, 3D-QSAR methods would lead to

statistically better models, as the type of descriptors used are

in principle more representative of the molecular features

that are exposed when interacting with proteins. Unfortu-

nately, experience in a large number and diverse range of

applications over the last four decades shows this is not

always the case (Perkins et al., 2003; Chohan et al., 2006).

Developing the optimal QSAR model for the chemical

property or biological effect of interest, as well as defining

its applicability domain within chemical space, is still very

much an active area of investigation (Dimitrov et al., 2005)

as described later (Ekins et al., 2007).

Rule-based methods. Statistically relevant QSAR models are

usually derived first from training sets composed of a few

tens of molecules to be assessed, then in a second stage, on
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an external set of molecules. The availability of biological

data for an increasing amount of ligands and protein–ligand

complexes has allowed the appearance of different types of

approaches. These are based on maximally exploiting this

information to extract knowledge and derive rules that can

then be applied to estimate quantitatively potential biological

effects of molecules from structure. A good example is the

rule-based methods derived from human expertise on the

biotransformation of ligands for its application in the

prediction of sites labile to drug metabolism. In these

methods, the rule-based algorithm first recognises target

sites (that is, functional groups) in the query molecule, then

lists all potential metabolic transformations these sites can

undergo, and finally prioritises the resulting metabolites

based on rules derived from prior knowledge (Kulkarni et al.,

2005). Existing systems of this type are MetabolExpert (Darvas

et al., 1999), META (Klopman and Tu, 1999) and METEOR

(Langowski and Long, 2002). In particular, the METEOR

system contains a biotransformation dictionary describing

over 300 reaction rules and more than 800 reasoning rules.

The metabolic reactions are descriptions of generic reactions

rather than simple entries in a reaction database. The

reasoning engine contains rules of two types, namely

absolute and relative. The rules of absolute reasoning

evaluate the likelihood of a biotransformation taking place

based on five levels: Probable, Plausible, Equivocal, Doubted

and Improbable (Button et al., 2003). The rules of relative

reasoning assign priorities to potentially competing reac-

tions (for example, primary alcohols are oxidised in

preference to secondary alcohols), equal priority being

assigned when no preference is known. The reasoning

engine then uses the non-numerical Logic of Argumentation

to construct arguments for and against a hypothesis and

hence evaluate the likelihood of a specific reaction taking

place in the query substrate. The likelihood of biotransfor-

mation can also be modified by the reasoning engine

according to the general, global relationship between drug

metabolism and lipophilicity thanks to a link to an external

log P predictor. The reasoning engine uses further rules to

avoid a combinatorial explosion of output resulting from

unconstrained analyses of query structures. Queries can

be analysed at a number of available search levels, such

that only reactions of greater likelihood than the chosen

threshold are displayed. A recent application of this

approach to galantamine showed a full qualitative agree-

ment between in vivo experimental results in rats, dogs and

humans (Mannens et al., 2002) and the in silico predicted

biotransformations (Testa et al., 2005) (Figure 2).

Knowledge-based approaches. In a different field, databases of

ligand–protein complexes are being exploited to derive

knowledge-based potentials as a means to estimate the free

energies of molecular interactions when docking ligands

into protein cavities (Gohlke and Klebe, 2002). This knowl-

edge-based approach essentially involves converting inter-

atomic distance contributions found in ligand–protein

complexes into pair-potential functions for the different

pairs of ligand/protein atom types. An estimation of the free

energy of interaction between a ligand and a protein is then

obtained by adding the contributions from ligand/protein

atom pairs within a certain distance. An attractive feature of

this approach is that important, but poorly understood,

contributions to ligand–protein binding (such as entropic

terms and solvation) are implicitly taken into account. The

different potentials differ mainly on the ligand and protein

atom types defined, the nature and extent of the experi-

mental set of complexes used, the range of interatomic

distances scanned and the width of the distance bins. The

relative performance of four knowledge-based potentials

(BLEEP-2, DrugScore, PMF and SMoG2001) for estimating

the ligand-binding affinities for a set of 77 complexes

representative of the same number of proteins was reviewed

recently (Fradera and Mestres, 2004). None of the knowl-

edge-based potentials consistently outperformed the rest.

The results revealed that present knowledge-based potentials

are still far from being universally applicable, current

performance being strongly dependent on the type of

ligand–protein complexes being analysed. There has been

some discussion as to what steps can be taken to improve the

protein–ligand potentials to balance speed and accuracy

while enabling the efficient use of data and maximising

transferability (Shimada, 2006).

Virtual ligand screening

The process of scoring and ranking molecules in large

chemical libraries according to their likelihood of having

affinity for a certain target, is generally referred to as virtual

screening (Oprea and Matter, 2004). In this respect, virtual

screening can be regarded as an attempt to extend the

concept of QSAR, originally focused on small sets of

congeneric compounds, along the chemical dimension

defined by existing synthesised molecules as well as plausible

synthesisable molecules. The term itself was coined in the

late 1990s when computer-based methods reached sufficient

maturity to offer an alternative to experimental high-

throughput screening (HTS) techniques that were having

disappointingly poorer performances and higher costs than

originally anticipated (Lahana, 1999). Over the years, the

pharmaceutical industry has learnt to accept that virtual

screening methods can indeed be an efficient complement to

HTS (Stahura and Bajorath, 2004) to the point that they have

undoubtedly become an integral part of today’s lead

generation process (Bajorath, 2002; Bleicher et al., 2003).

In contrast to technology-driven HTS, virtual screening is a

knowledge-driven approach that requires structural informa-

tion either on bioactive ligands for the target of interest

(ligand-based virtual screening) or on the target itself (target-

based virtual screening). Comparative studies have suggested

that information about a target obtained from known

bioactive ligands is as valuable as knowledge of the target

structures for identifying novel bioactive scaffolds through

virtual screening (Evers et al., 2005a; Zhang and Muegge,

2006). Therefore, the final choice for a method to use will

ultimately depend on the type and amount of information

available without a priori having a large impact on perfor-

mance.

Ligand-based methods. A diverse range of ligand-based

virtual screening methods exist. Their degree of sophistica-

In silico pharmacology for drug discovery
S Ekins et al12

British Journal of Pharmacology (2007) 152 9–20



tion, and thus their ultimate computational cost, depend

very much on the type of structural information being used

(Lengauer et al., 2004). All these methods rely on the central

similarity-property principle which states that similar

molecules should exhibit similar properties (Johnson and

Maggiora, 2006) and thus chemical similarity calculations

are at the core of ligand-based virtual screening (Willett et al.,

2003). Accordingly, all the molecules in a particular database

can be scored relative to the similarity to one or multiple

bioactive ligands and then ranked to reflect decreasing

probability of being active. These methods generally provide

significant enrichments over random selection of molecules

in databases. After this procedure, the top scoring molecules

can be prioritised for going into experimental testing and

thus represents a cost-effective strategy in drug discovery

programmes.

Of the different structure representations being used

for ligand-based virtual screening, topological fingerprints

encoding the presence of substructural fragments in mole-

cules have been by far the most commonly used (Hert et al.,

2004). Still at the topological level, the use of distributions

of atom-centred feature pairs has also been proven to be

highly effective in a variety of virtual screening applications

(Schneider et al., 1999; Schuffenhauer et al., 2003;

Gregori-Puigjane and Mestres, 2006). In contrast to topolo-

gical approaches, methods based on geometrical representa-

tions of molecular structures can be used instead. Among

them, flexible superposition of molecules onto one or

multiple conformations of a reference bioactive ligand is a

well-established methodology in virtual screening (Lemmen

and Lengauer, 2000; Mestres and Veeneman, 2003;

Jain, 2004).

Figure 2 Metabolic scheme of galantamine comparing the experimental in vivo results in rats, dogs and humans (Mannens et al., 2002) with
the predictions of METEOR (Testa et al., 2005). (Reproduced with the kind permission of the Verlag Helvetica Chimica Acta in Zurich).

In silico pharmacology for drug discovery
S Ekins et al 13

British Journal of Pharmacology (2007) 152 9–20



Perhaps the most widely employed methods requiring 3D

structure representations of molecules are those exploiting

the concept of pharmacophore similarity (Mason et al.,

2001). By definition, a pharmacophore is the 3D arrange-

ment of molecular features necessary for bioactivity

(Wermuth et al., 1998) and the underlying methodologies

have been widely described (Martin, 1992, 1993; Guner,

2000; Langer and Hoffman, 2006). Although initially slow to

gain an industrial foothold, pharmacophore approaches have

subsequently been applied to many therapeutic targets for

the virtual screening of compound databases (Sprague, 1995;

Barnum et al., 1996; Sprague and Hoffman, 1997). Successful

applications of the use of pharmacophores in virtual screen-

ing include the identification of hits for a variety of targets

such as protein kinase C (Wang et al., 1994), farnesyltrans-

ferase (Kaminski et al., 1997), HIV integrase (Nicklaus et al.,

1997; Carlson et al., 2000), endothelial differentiation gene

receptor antagonists (Koide et al., 2002), urotensin antago-

nists (Flohr et al., 2002), CCR5 antagonist (Debnath, 2003)

and mesangial cell proliferation inhibitor discovery (Kurogi

et al., 2001), to mention a few. Pharmacophores have also

been generated for numerous ADME/Tox-related proteins

(Ekins and Swaan, 2004). These efforts suggest that pharma-

cophore-based approaches may have considerable versatility

and applicability to be used with difficult biological targets.

Newer methods for extracting ligand pharmacophores from

protein cavities have also emerged recently (Wolber and

Langer, 2005) which may facilitate the generation of

pharmacophores for multiple targets and simultaneous

pharmacophore selectivity screening.

Target-based methods. Target-based virtual screening methods

depend on the availability of structural information of the

target, that being either determined experimentally or

derived computationally by means of homology modelling

techniques (Shoichet, 2004; Klebe, 2006). These methods

aim at providing, on one hand, a good approximation of the

expected conformation and orientation of the ligand into

the protein cavity (docking) and, on the other hand, a

reasonable estimation of its binding affinity (scoring).

Despite its appealing concept, docking and scoring ligands

in target sites is still a challenging process after more than 20

years of research in the field (Kitchen et al., 2004; Ghosh

et al., 2006; Leach et al., 2006) and the performance of

different implementations has been found to vary widely

depending on the given target (Cummings et al., 2005). To

alleviate this situation, the use of multiple active site

corrections has been suggested to remedy the ligand-

dependent biases in scoring functions (Vigers and Rizzi,

2004) and the use of multiple scoring functions (consensus

scoring) has been also recommended to improve the

enrichment of true positives in virtual screening (Charifson

et al., 1999). Also, as the number of protein–ligand

complexes available continues to grow, docking methods

are beginning to incorporate all the information derived

from the conformation adopted by protein-bound ligands as

a knowledge-based strategy to correct some of the limita-

tions of current scoring functions and actively guide the

orientation of the ligands into the protein cavity (Fradera

and Mestres, 2004).

In spite of all these limitations, target-based virtual

screening has gained a reputation in successfully identifying

and generating novel bioactive compounds. As an example,

the use of a knowledge-based potential (SMoG) in protein–

ligand docking, resulted in the identification of new

picomolar ligands for the human carbonic anhydrase II

(Grzybowski et al., 2002). Docking methods have also

resulted in the discovery of novel inhibitors for several

kinase targets, including cyclin-dependent kinases, epider-

mal growth factor receptor kinase and vascular endothelial

growth factor receptor 2 kinase among others (Muegge and

Enyedy, 2004). Finally, the application of docking methods

to targets for which experimentally determined structures

are not available yet has gained considerable attention in

recent years, particularly for the many targets of therapeutic

relevance belonging to the superfamily of G-protein-coupled

receptors (GPCRs) (Bissantz et al., 2003). In these cases,

structural information is generated computationally by

modelling the structure of the target of interest on the basis

of a template structure of a related target, including often

information on ligands as restraints (Evers et al., 2003). Such

strategies have resulted in the successful identification of

novel antagonists for the neurokinin-1 and the a1A-adrener-

gic receptors (Evers and Klebe, 2004; Evers and Klabunde,

2005b).

Virtual affinity profiling

If virtual ligand screening extended QSAR along the

chemical dimension, recent trends in virtual affinity profil-

ing are adding a further biological dimension to it. A wave of

new methods that are capable of estimating the pharmaco-

logical profile of molecules on multiple targets have been

recently reported. These promise to have a strong influence

in drug discovery as a means for detecting during the

optimisation process potential side effects of compounds due

to off-target affinities (O’Connor and Roth, 2005; Paolini

et al., 2006). This notwithstanding, it should be recognised

that the current flourishing of these methods is mainly a

consequence of the important progress experienced by some

coordinated initiatives dedicated to data collection, classifi-

cation and storage, both in extracting pharmacological data

for ligands as well as in gathering structural information for

proteins (Mestres, 2004).

Ligand-based methods. The development of ligand-based

affinity profiling methods has benefited enormously from

the construction of annotated chemical libraries that

incorporate literature-based pharmacological data into tradi-

tional chemical repositories (Savchuk et al., 2004). Among

these, the WOMBAT database (Sunset Molecular Discovery

LLC, Santa Fe, NM, USA) provides biological information for

120 400 molecules reported in medicinal chemistry journals

over the last 30 years. The MDL Drug Data Report or MDDR

(MDL Information Systems, San Ramon, CA, USA) includes

information on therapeutic action and biological activity for

over 132 000 compounds gathered from patent literature,

journals and congresses. The AurSCOPE databases (Aureus

Pharma, Paris, France) offer a collection of chemical libraries

containing over 320 000 molecules annotated to about
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1 300 000 biological activities related to members of thera-

peutically relevant protein families covered in more than

38 000 publications. And finally the MedChem and Target

Inhibitor databases (GVK Biosciences, Hyderabad, India)

compile around 2 000 000 molecules with biological activity,

toxicity and pharmacological information for therapeuti-

cally relevant protein families extracted from more than

20 000 publications. All these massive annotation initiatives

ultimately allow the end-user to connect small molecules to

target proteins on the basis of data published in scientific

publications. This is then available to use in creating ligand-

based protein models that can be used for virtual affinity

profiling (Schuffenhauer and Jacoby, 2004).

One of the earliest developed initiatives is the computer

system PASS (Poroikov et al., 2000), which is based on the

analysis of structure–activity relationships for a training set

of compounds consisting of about 35 000 biologically active

compounds extracted from the literature. The system

provides a prediction of the activity spectra of substances

for more than 500 biological activities. In a second similar

pioneering work, the relationships between the chemical

structures of 48 compounds and their pharmacological

profile against a set of more than 70 receptors, transporters

and channels relevant to a central nervous system (CNS)-

oriented project were analysed (Poulain et al., 2001). Along

the same line, a biospectra similarity analysis was performed

by clustering a set of 1567 drugs for which percent inhibition

values determined at single high ligand concentration was

available for a set of 92 assays (Fliri et al., 2005). In another

study, the MDDR database was used as a source of ligands

annotated to the four major target classes, namely, enzymes,

GPCRs, nuclear receptors and ligand-gated ion channels

(Schuffenhauer et al., 2002). The resulting ligand-target

classification scheme was subsequently used for searching

for structures binding to dopamine D2, all dopamine

receptors, and all amine-binding class A GPCRs using

dopamine D2-binding compounds as a reference set. The

WOMBAT database has also been used to derive a multiple-

category Laplacian-modified naı̈ve Bayesian model trained

on extended connectivity fingerprints for a set of 964 target

classes (Nidhi et al., 2006). The model was then applied to

predict the top three most likely protein targets for

compounds from the MDDR database and it was found that

on average, it was 77% correct at target identification. A

database containing thousands of substructures annotated to

over 500 biological endpoints, including pharmacological,

cell-based, animal model-based, toxicity, ADME and thera-

peutic outcomes, has been reported (Merlot et al., 2003). The

substructural database is then used as an end point alert for

molecules containing any of the substructures catalogued in

the database associated with a given end point. From a

similar perspective, a database of topological scaffolds was

recently constructed (Wilkens et al., 2005) in which each

scaffold is linked to the distribution of affinities associated to

all molecules containing it. This can be used as a means to

identify those scaffolds showing a statistical enrichment in

certain biological activities. In a further example, the

scaffolds extracted from a literature-based chemical library

of 1426 molecules annotated to 27 members of the nuclear

receptor family were used to identify the set of most

promiscuous scaffolds within this family (Cases et al.,

2005). Similarly, an ontology-based pattern identification

algorithm was used to identify nearly 1500 scaffold families

with statistically significant structure–activity profile rela-

tionships (Yan et al., 2006). The use of multiple structure-

based pharmacophore models built for various viral targets

has also been investigated as a ligand-based affinity profiling

method to estimate the pharmacological profile of 100

antiviral compounds (Steindl et al., 2006). The results

showed successful virtual activity profiling for approxi-

mately 90% of all input molecules. A final example used a

novel set of descriptors based on topological atom-centred

feature-based distributions (Gregori-Puigjane and Mestres,

2006) and a database of 2033 molecules annotated to 25

nuclear receptors to derive a ligand-based descriptor model

for the profiling of chemical libraries on the family of

nuclear receptors (Mestres et al., 2006). Application of this

ligand-based nuclear receptor profiling approach to an

additional database of 2944 drugs provided suggestions of

potential off-targets affinities.

Target-based methods. The development of target-based

affinity profiling methods has taken advantage of the

functional coverage of protein families provided by the

almost exponential growth in the number of experimentally

determined protein structures (Mestres, 2005). Unfortu-

nately, primarily because of technical difficulties (for

example, membrane-bound proteins), not all of the thera-

peutically relevant protein families are at present equally

covered by 3D structures. For example, with over 20 000

entries, enzymes are by far the structurally most populated

family (Garcia-Serna et al., 2006). In contrast, around 200

structures are available for nuclear receptors and ligand-

gated ion channels, whereas only a handful has been

resolved for GPCRs. In the latter case, homology modelling

techniques are required to complement current low coverage

levels of experimentally determined structures with compu-

tationally derived structural models (Pieper et al., 2006).

Although extremely computationally demanding com-

pared with ligand-based methods, applications of target-

based virtual profiling (also referred to as inverse docking)

have been reported in recent years (Toledo-Sherman and

Chen, 2002). For example, reasonable predictions for the

scaffold and S1-specificity preferences for serine proteases

were obtained when multiple combinatorial libraries were

docked against trypsin, chymotrypsin and elastase (Lamb

et al., 2001). The same approach was further applied to

virtually screen three libraries against a panel of six purine

phosphoribosyltransferases (PRTs) from different species,

giving rise to the discovery of micromolar inhibitors of

Giardia lamblia guanine PRT (GPRT) that displayed up to

sevenfold selectivity when tested in human GPRT (Aronov

et al., 2001). Systematic virtual screening of a library

consisting of 5000 random compounds and 78 known active

ligands against 19 different protein structures representative

of 10 nuclear receptors was also reported (Schapira et al.,

2003). Enrichments of between 33- to 100-fold were

obtained for all but one receptor and revealed that, for a

particular ligand, it is possible to identify the correct target

within the receptor family. However, reliable discrimination

In silico pharmacology for drug discovery
S Ekins et al 15

British Journal of Pharmacology (2007) 152 9–20



between the closely related receptor isoforms remained a

challenge. Application of an inverse docking approach

involving multiple-conformer shape-matching alignment

of a molecule to a protein cavity on two therapeutic agents

showed that 50% of the computer-identified potential

protein targets were implicated or confirmed by experiments

(Chen and Zhi, 2001b). The same approach was also used to

forecast potential toxicity problems and for the identifica-

tion of protein targets implicated in side effects of small

molecules, with an estimated prediction success rate of 83%

(Chen and Ung, 2001a). The sc-PDB is a collection of 6415

3D structures of binding sites extracted from the Protein

Data Bank (Kellenberger et al., 2006). Exploiting this binding

site database, the native target of four unrelated ligands

could be identified among the top 1% of scored binding

sites, with 70 to 100-fold enrichment relative to random

screening (Paul et al., 2004). A method has also been reported

for rapidly computing the relative affinity of inhibitors to

individual members of the kinase family (Rockey and Elcock,

2005). This was tested on five known kinase inhibitors, and

was able to identify the correct native targets of inhibitors as

well as reproducing the experimental trends in binding

affinities. A web server for inverse docking was recently

reported that allows automatic screening of small molecules

over a target database of 698 protein structures covering 15

therapeutic areas (Li et al., 2006).

Data visualisation

Computational methods have the potential to generate

predictions for many different types of pharmacological

and physicochemical properties for each molecule structure,

the analysis of such data would indicate the need for

multidimensional methods and perhaps sophisticated visua-

lisation tools for data mining (Cheng et al., 2002; Ekins et al.,

2002, 2006). Commercially available tools such as Diva and

Spotfire (Ahlberg, 1999) have been widely used for analysis

of ADME and physicochemical property data (Ekins et al.,

2002, 2006; Stoner et al., 2004) or integrated into proprietary

decision support systems (Rojnuckarin et al., 2005), whereas

newer methods are also available (Oellien et al., 2005) with

similar 3D graphing and filtering options. Further methods

such as agglomerative hierarchical clustering based on 2D

structural similarity, recursive partitioning, Sammon maps,

self-organising maps and generative topographic mapping

could be used with computational predictions (Balakin et al.,

2005; Kibbey and Calvet, 2005; Maniyar et al., 2006;

Yamashita et al., 2006).

Because molecules may have multiple off-target effects

simultaneously it will be important to understand how they

perturb the proteome either alone or in a combination

(Sharom et al., 2004). One way to visualise the target–

molecule interactions would be as a network of proteins and

small molecules represented as nodes connected by edges

when an interaction above a particular affinity exists

between them (Ekins et al., 2005a, b) or alternatively a

target-based network in which the proteins are highlighted

when they are shown to interact with a small molecule

(Ekins, 2006). Such network analysis has traditionally been

used for putting the genes with expression data into the

context of their known pathways of transcription factors,

serving as a method to understand some of the complex

interactions. For example, commercially available tools can

be used to mine biological knowledge to create networks for

molecules alone which may be useful to understand the

relationships between endogenous molecules (Figure 3a) or

they can facilitate visualising gene expression data for

b

NADPH

inositol 1,4...

a

4-androstene...

oleic acid

melatonin

corticosterone

alcohol

pregnenolone

20alpha-hydr...

testosterone

6-hydroxydop...

Figure 3 (a) An endogenous molecule network generated using
Ingenuity Pathways Analysis (Ingenuity Systems Inc., Redwood City,
CA, USA). Solid lines represent direct interactions and dashed lines
represent indirect interactions. (b) A network showing the con-
nectivity via direct interactions of several key nuclear hormone
receptors (rectangles) and their regulation of several transporters
(trapezoid) and enzymes (diamonds) involved in drug absorption
and metabolism while gene expression data from rats
after treatment with 2(S)-((3,5-bis(trifluoromethyl)benzyl)-oxy)-3(S)
phenyl-4-((3-oxo-1,2,4-tri azol-5-yl)methyl)morpholine (L-742694)
is overlaid (Hartley et al., 2004). The network shows key upregulated
transporter and enzyme genes (red symbols). Note that several
genes are connected to PXR (NRI13).
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nuclear receptors that regulate drug metabolism and toxicity

(Figure 3b).

This type of network approach may also help in designing

drugs with affinity for multiple targets (Csermely et al., 2005)

or avoid anti-targets. For example, an interaction network

between 25 nuclear receptors was recently constructed on

the basis of an annotated chemical library containing 2033

molecules (Mestres et al., 2006). The network revealed

potential cross-pharmacologies between members of this

family with implications for the side-effect prediction of

small molecules. We have discussed previously some of the

challenges ahead for such network approaches including

comparing multiple networks (Ekins et al., 2006). This could

be important if we are to use this type of approach for

visualising the effect of a molecule on the connected

proteome and the comparison of related molecule effects

or different doses. More complex simulations of network

biology may also be important to optimise targeting, dosing

level and frequency. An in silico simulation of inhibitor

effects (incorporating PK data) on the NF-kB pathway has

shown a greater potential for protein oscillatory behaviour

for inhibition upstream of this protein than for direct

inhibition. Such behaviour is common in networks with

negative feedback and should be considered and understood

for maximal therapeutic benefit (Sung and Simon, 2004).

Summary

The first part of this review has briefly described the

development of in silico pharmacology through the devel-

opment of methods including databases, quantitative

structure–activity relationships, similarity searching, phar-

macophores, homology models and other molecular model-

ling, machine learning, data mining, network analysis tools

and data analysis tools that use a computer. We have

introduced how some of these methods can be used for

virtual ligand screening and virtual affinity profiling.

Although these methods are not proven yet to ‘discover

drugs’ alone, they represent progress by increasingly demon-

strating their ability to deliver enrichment in identifying

active molecules for the target of interest when compared

with random selection or other traditional methods. In the

accompanying second part of the review, we shall describe in

more detail the successful ligand screening efforts for specific

target classes and we will discuss some of the advantages and

disadvantages of in silico methods with respect to in vitro and

in vivo methods for pharmacology research.

Acknowledgements

SE gratefully acknowledges Dr Cheng Chang and Dr Peter

W Swaan (University of Maryland), Dr Konstantin V Balakin

(Chemical Diversity, Inc.) for in silico pharmacology colla-

borations over the past several years and Dr Hugo Kubinyi

for his insightful efforts in tabulating the successful applica-

tions of in silico approaches which was inspirational.

Ingenuity Systems Inc., graciously provided access to

Ingenuity Pathways Analysis. SE kindly acknowledges

Dr Maggie AZ Hupcey for her support. JM acknowledges

the research funding provided by the Spanish Ministerio

de Educación y Ciencia (project reference BIO2005-04171)

and the Instituto de Salud Carlos III.

Conflict of interest

The authors state no conflict of interest.

References

Ahlberg C (1999). Visual exploration of HTS databases: bridging the
gap between chemistry and biology. Drug Discov Today 4: 370–376.

Akamatsu M (2002). Current state and perspectives of 3D-QSAR. Curr
Top Med Chem 2: 1381–1394.

Albert A (1971). Relations between molecular structure and biologi-
cal activity: stages in the evolution of current concepts. Ann Rev
Pharmacol 11: 13–36.

Albert A (1985). Selective Toxicity. The Physcico-Chemical Basis of
Therapy. Chapman and Hall: London.

Aradi I, Erdi P (2006). Computational neuropharmacology:
dynamical approaches in drug discovery. Trends Pharmacol Sci 27:
240–243.

Arı̈ens EJ (1979). Receptors: from fiction to fact. Trends Pharmacol Sci
1: 11–15.

Aronov AM, Munagala NR, Kuntz ID, Wang CC (2001). Virtual
screening of combinatorial libraries across a gene family: in search of
inhibitors of Giardia lamblia guanine phosphoribosyltransferase.
Antimicrob Agents Chemother 45: 2571–2576.

Bajorath J (2002). Integration of virtual and high-throughput
screening. Nat Rev Drug Disc 1: 882–894.

Balakin KV, Ivanenkov YA, Savchuk NP, Ivaschenko AA, Ekins S
(2005). Comprehensive computational assessment of ADME
properties using mapping techniques. Curr Drug Disc Tech 2:
99–113.

Barnum D, Greene J, Smellie A, Sprague P (1996). Identification of
common functional configurations among molecules. J Chem Inf
Comput Sci 36: 563–571.

Bissantz C, Bernard P, Hibert M, Rognan D (2003). Protein-based
virtual screening of chemical databases. II. Are homology models
of G-protein coupled receptors suitable targets? Proteins 50: 5–25.

Bleicher KH, Bohm HJ, Muller K, Alanine AI (2003). Hit and lead
generation: beyond high-throughput screening. Nat Rev Drug
Discov 2: 369–378.

Burgen ASV (1981). Conformational changes and drug action. Fed
Proc 40: 2723–2728.

Button WG, Judson PN, Long A, Vessey JD (2003). Using absolute
and relative reasoning in the prediction of the potential
metabolism of xenobiotics. J Chem Inf Compu Sci 43: 1371–1377.

Carlson HA, Masukawa KM, Rubins K, Bushman FD, Jorgenson WL,
Lins RD et al. (2000). Developing a dynamic pharmacophore
model for HIV-1 integrase. J Med Chem 43: 2100–2114.

Cases M, Garcia-Serna R, Hettne K, Weeber M, van der Lei J, Boyer S
et al. (2005). Chemical and biological profiling of an annotated
compound library directed to the nuclear receptor family. Curr Top
Med Chem 5: 763–772.

Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999). Consensus
scoring: a method for obtaining improved hit rates from docking
databases of three-dimensional structures into proteins. J Med
Chem 42: 5100–5109.

Chen YZ, Ung CY (2001a). Prediction of potential toxicity and side
effect protein targets of a small molecule by a ligand–protein
inverse docking approach. J Mol Graph Model 20: 199–218.

Chen YZ, Zhi DG (2001b). Ligand–protein inverse docking and its
potential use in the computer search of protein targets of a small
molecule. Proteins 43: 217–226.

Cheng A, Diller DJ, Dixon SL, Egan WJ, Lauri G, Merz Jr KMJ (2002).
Computation of the physico-chemical properties and data mining
of large molecular collections. J Comput Chem 23: 172–183.

In silico pharmacology for drug discovery
S Ekins et al 17

British Journal of Pharmacology (2007) 152 9–20



Chohan KK, Paine SW, Waters NJ (2006). Quantitative structure
activity relationships in drug metabolism. Curr Top Med Chem 6:
1569–1578.

Cramer RD, Patterson DE, Bunce JD (1988). Comparative molecular
field analysis (CoMFA). 1. Effect of shape on binding of steroids to
carrier proteins. J Am Chem Soc 110: 5959–5967.

Csermely P, Agoston V, Pongor S (2005). The efficiency of multi-
target drugs: the network approach might help drug design. Trends
Pharmacol Sci 26: 178–182.

Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005).
Comparison of automated docking programs as virtual screening
tools. J Med Chem 48: 962–976.

Cushny A (1926). Biological Relations of Optical Isomeric Substances.
Williams and Wilkins: Baltimore.

Danchin A (2002). The Delphic Boat – What Genomes Tell Us. Harvard
University Press: Cambridge, MA.

Danchin A, Medigue C, Gascuel O, Soldano H, Henaut A (1991).
From data banks to data bases. Res Microbiol 142: 913–916.

Darvas F, Marokhazi S, Kormos P, Kulkarni P, Kalasz G, Papp A (1999).
MetabolExpert: its use in metabolism research and in combinator-
ial chemistry. In: Erhardt PW (ed). Drug Metabolism: Databases and
High-Throughput Testing During Drug Design and Development.
International Union of Pure and Applied Chemistry and Blackwell
Science: London.

Debnath AK (2003). Generation of predictive pharmacophore
models for CCR5 anatagonists: study with piperidine- and
piperazine-based compounds as a new class of HIV-1 entry
inhibitors. J Med Chem 46: 4501–4515.

Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G,
Niemela J et al. (2005). A stepwise approach for defining the
applicability domain of SAR and QSAR models. J Chem Inf Model
45: 839–849.

Dudek AZ, Arodz T, Galvez J (2006). Computational methods in
developing quantitative structure–activity relationships (QSAR):
a review. Comb Chem High Throughput Screen 9: 213–228.

Ekins S (2006). Systems-ADME/Tox: resources and network
approaches. J Pharmacol Toxicol Methods 53: 38–66.

Ekins S, Boulanger B, Swaan PW, Hupcey MAZ (2002). Towards a new
age of virtual ADME/TOX and multidimensional drug discovery.
J Comput Aided Mol Des 16: 381–401.

Ekins S, Kirillov E, Rakhmatulin EA, Nikolskaya T (2005a). A novel
method for visualizing nuclear hormone receptor networks
relevant to drug metabolism. Drug Metab Dispos 33: 474–481.

Ekins S, Mestres J, Testa B (2007). In silico pharmacology for drug
discovery: applications to targets and beyond. Br J Pharmacol
[E-pub ahead of print: 4 June 2007; doi:10.1038/sj.bjp.0707306].

Ekins S, Nikolsky Y, Nikolskaya T (2005b). Techniques: application of
systems biology to absorption, distribution, metabolism, excre-
tion, and toxicity. Trends Pharmacol Sci 26: 202–209.

Ekins S, Shimada J, Chang C (2006). Application of data mining
approaches to drug delivery. Adv Drug Del Rev 58: 1409–1430.

Ekins S, Swaan PW (2004). Development of computational models
for enzymes, transporters, channels and receptors relevant to
ADME/TOX. Rev Comp Chem 20: 333–415.

Evers A, Gohlke H, Klebe G (2003). Ligand-supported homology
modelling of protein binding-sites using knowledge-based poten-
tials. J Mol Biol 334: 327–345.

Evers A, Hessler G, Matter H, Klabunde T (2005a). Virtual screening
of biogenic amine-binding G-protein coupled receptors: compara-
tive evaluation of protein- and ligand-based virtual screening
protocols. J Med Chem 48: 5448–5465.

Evers A, Klabunde T (2005b). Structure-based drug discovery using
GPCR homology modeling: successful virtual screening for
antagonists of the alpha1A adrenergic receptor. J Med Chem 48:
1088–1097.

Evers A, Klebe G (2004). Successful virtual screening for a sub-
micromolar antagonist of the neurokinin-1 receptor based on a
ligand-supported homology model. J Med Chem 47: 5381–5392.

Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005). Biospectra
analysis: model proteome characterizations for linking molecular
structure and biological response. J Med Chem 48: 6918–6925.

Flohr S, Kurz M, Kostenis E, Brkovich A, Fournier A, Klabunde T
(2002). Identification of nonpeptidic urotensin II receptor antago-
nists by virtual screening based on a pharmacophore model

derived from structure–activity relationships and nuclear
magnetic resonance studies on urotensin II. J Med Chem 45:
1799–1805.

Fradera X, Mestres J (2004). Guided docking approaches to structure-
based design and screening. Curr Top Med Chem 4: 687–700.

Garcia-Serna R, Opatowski L, Mestres J (2006). FCP: functional
coverage of the proteome by structures. Bioinformatics 22:
1792–1793.

Ghosh S, Nie A, An J, Huang Z (2006). Structure-based virtual
screening of chemical libraries for drug discovery. Curr Opin Chem
Biol 10: 194–202.

Gohlke H, Klebe G (2002). Approaches to the description and
prediction of the binding affinity of small-molecule ligands to
macromolecular receptors. Angew Chem Int Ed Engl 41: 2644–2676.

Gozalbes R, Doucet JP, Derouin F (2002). Application of topological
descriptors in QSAR and drug design: history and new trends. Curr
Drug Targets Infect Disord 2: 93–102.

Gregori-Puigjane E, Mestres J (2006). SHED: Shannon entropy
descriptors from topological feature distributions. J Chem Inf
Model 46: 1615–1622.

Grzybowski BA, Ishchenko AV, Kim C-K, Topalov G, Chapman R,
Christianson DW et al. (2002). Combinatorial computational
method gives new picomolar ligands for a known enzyme. Proc
Natl Acad Sci USA 99: 1270–1273.

Guner OF (2000). Pharmacophore, Perception, Development, and Use
in Drug Design. University International Line: San Diego.

Hansch C (1972). Quantitative relationships between lipophilic
character and drug metabolism. Drug Metab Rev 1: 1–14.

Hansch C, Fujita T (1964). Rho-sigma-pi analysis. A method for the
correlation of biological activity and chemical structure. J Am
Chem Soc 86: 1616–1626.

Hansch C, Hoekman D, Leo A, Weininger D, Selassie CD (2002).
Chem-bioinformatics: comparative QSAR at the interface between
chemistry and biology. Chem Rev 102: 783–812.

Hartley DP, Dai X, He YD, Carlini EJ, Wang B, Huskey SE et al. (2004).
Activators of the rat pregnane X receptor differentially modulate
hepatic and intestinal gene expression. Mol Pharmacol 65:
1159–1171.

Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E et al. (2004).
Comparison of topological descriptors for similarity-based virtual
screening using multiple bioactive reference structures. Org Biomol
Chem 2: 3256–3266.

Jain AN (2004). Ligand-based structural hypotheses for virtual
screening. J Med Chem 47: 947–961.

Johnson M, Maggiora GM (2006). Concepts and Applications of
Molecular Similarity. John Wiley & Sons: New York.

Kaminski JJ, Rane DF, Snow ME, Weber L, Rothofsky ML, Anderson
SDSLL (1997). Identification of novel farnesyl protein transferase
inhibitors using three-dimensional searching methods. J Med
Chem 40: 4103–4112.

Karelson M (2000). Molecular Descriptors in QSAR/QSPR. Wiley-VCH:
New York.

Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D
(2006). sc-PDB: an annotated database of druggable binding sites
from the Protein Data Bank. J Chem Inf Model 46: 717–727.

Kibbey C, Calvet A (2005). Molecular Property eXplorer: a novel
approach to visualizing SAR using tree-maps and heatmaps.
J Chem Inf Model 45: 523–532.

Kitchen DB, Decornez H, Furr JR, Bajorath J (2004). Docking and
scoring in virtual screening for drug discovery: methods and
applications. Nat Rev Drug Discov 3: 935–949.

Klebe G (1998). Comparative molecular similarity indices analysis:
CoMSIA. Perspect Drug Disc Des 12–14: 87–104.

Klebe G (2006). Virtual ligand screening: strategies, perspectives and
limitations. Drug Discov Today 11: 580–594.

Klopman G, Tu M (1999). META: a program for the prediction of the
products of mammal metabolism of xenobiotics. In: Erhardt PW
(ed). Drug Metabolism: Databases and High-Throughput Testing
During Drug Design and Development. International Union of Pure
and Applied Chemistry and Blackwell Science: London.

Koide Y, Hasegawa T, Takahashi A, Endo A, Mochizuki N, Nakagawa
M et al. (2002). Development of novel EDG3 antagonists using
a 3D database search and their structure–activity relationships.
J Med Chem 45: 4629–4638.

In silico pharmacology for drug discovery
S Ekins et al18

British Journal of Pharmacology (2007) 152 9–20



Kubinyi H, Folkers G, Martin YC (1998). 3D-QSAR in Drug Design.
Kluwer/ESCOM: Leiden.

Kulkarni SA, Zhu J, Blechinger S (2005). In silico techniques for the
study and prediction of xenobiotic metabolism: a review.
Xenobiotica 35: 955–973.

Kurogi Y, Miyata K, Okamura T, Hashimoto K, Tsutsumi K, Nasu M
et al. (2001). Discovery of novel mesangial cell proliferation
inhibitors using a three-dimensional database searching method.
J Med Chem 44: 2304–2307.

Kurup A (2003). C-QSAR: a database of 18,000 QSARs and associated
biological and physical data. J Comput Aided Mol Des 17: 187–196.

Lahana R (1999). How many leads from HTS? Drug Discov Today 4:
447–448.

Lamb ML, Burdick KW, Toba S, Young MM, Skillman AG, Zou X et al.
(2001). Design, docking, and evaluation of multiple libraries
against multiple targets. Proteins 42: 296–318.

Langer T, Hoffman RD (2006). Pharmacophores and Pharmacophore
Searches. Wiley-VCH: Weinheim.

Langowski J, Long A (2002). Computer systems for the prediction of
xenobiotic metabolism. Adv Drug Del Rev 54: 407–415.

Leach AR, Shoichet BK, Peishoff CE (2006). Prediction of protein–
ligand interactions. Docking and scoring: successes and gaps.
J Med Chem 49: 5851–5855.

Lemmen C, Lengauer T (2000). Computational methods for the
structural alignment of molecules. J Comput Aided Mol Des 14:
215–232.

Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004). Novel
technologies for virtual screening. Drug Discov Today 9: 27–34.

Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K et al. (2006). TarFisDock:
a web server for identifying drug targets with docking approach.
Nucleic Acids Res 34: W219–W224.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997). Experi-
mental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv
Drug Del Rev 23: 3–25.

Maniyar DM, Nabney IT, Williams BS, Sewing A (2006). Data
visualization during the early stages of drug discovery. J Chem Inf
Model 46: 1806–1818.

Mannens GSJ, Snel CAW, Hendrickx J, Verhaeghe T, Le Jeune L, Bode
W et al. (2002). The metabolism and excretion of galantamine in
rats, dogs, and humans. Drug Metab Dispos 30: 553–563.

Martin YC (1992). 3D database searching in drug design. J Med Chem
35: 2145–2154.

Martin YC, Bures MG, Danaher EA, DeLazzer J, Lico I, Pavlik PA
(1993). A fast new approach to pharmacophore mapping and
its application to dopaminergic and benzodiazepine agonists.
J Comput Aided Mol Des 7: 83–102.

Mason JS, Good AC, Martin EJ (2001). 3D pharmacophores in drug
discovery. Curr Pharm Des 7: 567–597.

Merlot C, Domine D, Cleva C, Church DJ (2003). Chemical
substructures in drug discovery. Drug Discov Today 8: 594–602.

Mestres J (2004). Computational chemogenomics approaches to
systematic knowledge-based drug discovery. Curr Opin Drug Discov
Dev 7: 304–313.

Mestres J (2005). Representativity of target families in the Protein
Data Bank: impact for family-directed structure-based drug
discovery. Drug Discov Today 10: 1629–1637.

Mestres J, Couce-Martin L, Gregori-Puigjane E, Cases M, Boyer S
(2006). Ligand-based approach to in silico pharmacology: nuclear
receptor profiling. J Chem Inf Model 46: 2725–2736.

Mestres J, Veeneman GH (2003). Identification of ‘latent hits’ in
compound screening collections. J Med Chem 46: 3441–3444.

Meyer H (1899). Zur Theorie der Alkoholnarkose. Arch Expl Pathol
Pharmakol 42: 110–118.

Muegge I, Enyedy IJ (2004). Virtual screening for kinase targets. Curr
Med Chem 11: 693–707.

Nicklaus MC, Neamati N, Hong H, Mazumder A, Sunder S, Chen J
et al. (1997). HIV-1 integrase pharmacophore: discovery of
inhibitors through three-dimensional database searching. J Med
Chem 40: 920–929.

Nidhi, Glick M, Davies JW, Jenkins JL (2006). Prediction of biological
targets for compounds using multiple-category Bayesian
models trained on chemogenomics databases. J Chem Inf Model
46: 1124–1133.

O’Connor KA, Roth BL (2005). Finding new tricks for old drugs: an
efficient route for public-sector drug discovery. Nat Rev Drug Discov
4: 1005–1014.

Oellien F, Ihlenfeldt WD, Gasteiger J (2005). InfVis – platform-
independent visual data mining of multidimensional chemical
data sets. J Chem Inf Model 45: 1456–1467.

Oprea TI, Matter H (2004). Integrating virtual screening in lead
discovery. Curr Opin Chem Biol 8: 349–358.

Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995). Prediction of drug
binding affinities by comparative binding energy analysis. J Med
Chem 38: 2681–2691.

Overton E (1901). Studien über die Narkose. Gustav Fischer: Jena.
Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL

(2006). Global mapping of pharmacological space. Nat Biotechnol
24: 805–815.

Parascandola J (1980). Origins of the receptor theory. Trends
Pharmacol Sci 1: 189–192.

Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000). GRid-
INdependent descriptors (GRIND): a novel class of alignment-
independent three-dimensional molecular descriptors. J Med Chem
43: 3233–3243.

Paul N, Kellenberger E, Bret G, Muller P, Rognan D (2004).
Recovering the true targets of specific ligands by virtual screening
of the protein data bank. Proteins 54: 671–680.

Perkins R, Fang H, Tong W, Welsh WJ (2003). Quantitative structure–
activity relationship methods: perspectives on drug discovery and
toxicology. Environ Toxicol Chem 22: 1666–1679.

Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A
et al. (2006). MODBASE: a database of annotated comparative
protein structure models and associated resources. Nucleic Acids
Res 34: D291–D295.

Polanski J, Bak A, Gieleciak R, Magdziarz T (2006). Modeling robust
QSAR. J Chem Inf Model 46: 2310–2318.

Poroikov VV, Filimonov DA, Borodina YV, Lagunin AA, Kos A (2000).
Robustness of biological activity spectra predicting by computer
program PASS for noncongeneric sets of chemical compounds.
J Chem Inf Comput Sci 40: 1349–1355.

Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier
MC et al. (2001). From hit to lead. Analyzing structure–profile
relationships. J Med Chem 44: 3391–3401.

Rockey WM, Elcock AH (2005). Rapid computational identification
of the targets of protein kinase inhibitors. J Med Chem 48:
4138–4152.

Rojnuckarin A, Gschwend DA, Rotstein SH, Hartsough DS (2005).
ArQiologist: an integrated decision support tool for lead optimiza-
tion. J Chem Inf Model 45: 2–9.

Savchuk NP, Balakin KV, Tkachenko SE (2004). Exploring
the chemogenomic knowledge space with annotated chemical
libraries. Curr Opin Chem Biol 8: 412–417.

Schapira M, Abagyan R, Totrov M (2003). Nuclear hormone receptor
targeted virtual screening. J Med Chem 46: 3045–3059.

Schneider G, Neidhart W, Giller T, Schmid G (1999). ‘Scaffold-
Hopping’ by topological pharmacophore search: a contribution to
virtual screening. Angew Chem Int Ed Engl 38: 2894–2896.

Schuffenhauer A, Floersheim P, Acklin P, Jacoby E (2003). Similarity
metrics for ligands reflecting the similarity of the target proteins.
J Chem Inf Comput Sci 43: 391–405.

Schuffenhauer A, Jacoby E (2004). Annotating and mining the
ligand-target chemogenomics knowledge space. Drug Disc Today
Biosilico 2: 190–200.

Schuffenhauer A, Zimmermann J, Stoop R, van der Vyver JJ, Lecchini
S, Jacoby E (2002). An ontology for pharmaceutical ligands and its
application for in silico screening and library design. J Chem Inf
Comput Sci 42: 947–955.

Sharom JR, Bellows DS, Tyers M (2004). From large networks to small
molecules. Curr Opin Chem Biol 8: 81–90.

Shimada J (2006). The challenges of making useful protein-ligand
free energy predictions for drug discovery. In: Ekins S (ed).
Computer Applications in Pharmaceutical Research and Development.
John Wiley and Sons: Hoboken, pp 321–351.

Shoichet BK (2004). Virtual screening of chemical libraries. Nature
432: 862–865.

Sieburg HB (1990). Physiological studies in silico. Studies in the Sciences
of Complexity 12: 321–342.

In silico pharmacology for drug discovery
S Ekins et al 19

British Journal of Pharmacology (2007) 152 9–20



Sippl W (2002). Development of biologically active compounds
by combining 3D QSAR and structure-based design methods.
J Comput Aided Mol Des 16: 825–830.

Sprague PW (1995). Automated chemical hypothesis generation and
database searching with Catalyst. Perspect Drug Disc Des 3: 1–20.

Sprague PW, Hoffman R (1997). CATALYST pharmacophore models
and their utility as queries for searching 3D databases. In: van de
Waterbeemd H, Testa B, Folkers G (eds). Computer-Assisted Lead
Finding and Optimization. Verlag Helvetica Chimica Acta: Basel,
pp 225–240.

Stahura FL, Bajorath J (2004). Virtual screening methods that
complement HTS. Comb Chem High Throughput Screen 7: 259–269.

Steindl TM, Schuster D, Laggner C, Langer T (2006). Parallel
screening: a novel concept in pharmacophore modeling and
virtual screening. J Chem Inf Model 46: 2146–2157.

Stiefl N, Baumann K (2003). Mapping property distributions of
molecular surfaces: algorithm and evaluation of a novel 3D
quantitative structure–activity relationship technique. J Med Chem
46: 1390–1407.

Stoner CL, Gifford E, Stankovic C, Lepsy CS, Brodfuehrer J, Prasad JV
et al. (2004). Implementation of an ADME enabling selection and
visualization tool for drug discovery. J Pharm Sci 93: 1131–1141.

Sung M-H, Simon R (2004). In silico simulation of inhibitor drug
effects on nuclear factor-kB pathway dynamics. Mol Pharmacol 66:
70–75.

Swaan PW, Ekins S (2005). Reengineering the pharmaceutical
industry by crash-testing molecules. Drug Disc Today 10:
1191–1200.

Testa B, Balmat AL, Long A, Judson PN (2005). Predicting drug
metabolism – an evaluation of the expert system METEOR. Chem
Biodiver 2: 872–885.
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